Copied to
clipboard

G = C42:12D6order 192 = 26·3

10th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:12D6, C6.962+ 1+4, C4:C4:44D6, (C4xD12):8C2, (C4xC12):6C22, D6:Q8:4C2, C42:2S3:1C2, C42:7S3:6C2, C42:3S3:3C2, D6:C4:40C22, D6.D4:4C2, D6:D4.1C2, C2.8(D4oD12), (C2xC6).71C24, C22:C4.95D6, C42:C2:11S3, D6.15(C4oD4), C4:Dic3:56C22, (C2xDic6):5C22, (C22xC4).208D6, Dic3:4D4:43C2, (C2xC12).146C23, Dic3:C4:32C22, Dic3.D4:4C2, (C4xDic3):50C22, (C2xD12).23C22, C3:2(C22.45C24), C22.18(C4oD12), C23.28D6:27C2, (C22xS3).21C23, (S3xC23).37C22, C23.169(C22xS3), (C22xC6).141C23, C22.100(S3xC23), C6.D4.4C22, (C22xC12).435C22, (C2xDic3).198C23, (C22xDic3).88C22, C4:C4:S3:4C2, (C2xD6:C4):40C2, (S3xC2xC4):45C22, C6.28(C2xC4oD4), C2.10(S3xC4oD4), (S3xC22:C4):26C2, (C3xC4:C4):54C22, C2.30(C2xC4oD12), (C2xC6).41(C4oD4), (C2xC3:D4).9C22, (C3xC42:C2):13C2, (C2xC4).274(C22xS3), (C3xC22:C4).138C22, SmallGroup(192,1086)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:12D6
C1C3C6C2xC6C22xS3S3xC23S3xC22:C4 — C42:12D6
C3C2xC6 — C42:12D6
C1C22C42:C2

Generators and relations for C42:12D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=ab2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 696 in 248 conjugacy classes, 97 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xQ8, C24, Dic6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C2xC22:C4, C42:C2, C42:C2, C4xD4, C22wrC2, C22:Q8, C22.D4, C4.4D4, C42:2C2, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, C2xDic6, S3xC2xC4, C2xD12, C22xDic3, C2xC3:D4, C22xC12, S3xC23, C22.45C24, C42:2S3, C4xD12, C42:7S3, C42:3S3, Dic3.D4, S3xC22:C4, Dic3:4D4, D6:D4, D6.D4, D6:Q8, C4:C4:S3, C2xD6:C4, C23.28D6, C3xC42:C2, C42:12D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, C4oD12, S3xC23, C22.45C24, C2xC4oD12, S3xC4oD4, D4oD12, C42:12D6

Smallest permutation representation of C42:12D6
On 48 points
Generators in S48
(1 31 7 25)(2 35 8 29)(3 33 9 27)(4 34 10 28)(5 32 11 26)(6 36 12 30)(13 43 19 37)(14 47 20 41)(15 45 21 39)(16 46 22 40)(17 44 23 38)(18 48 24 42)
(1 16 4 13)(2 17 5 14)(3 18 6 15)(7 22 10 19)(8 23 11 20)(9 24 12 21)(25 40 28 37)(26 41 29 38)(27 42 30 39)(31 46 34 43)(32 47 35 44)(33 48 36 45)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 6)(2 5)(3 4)(7 12)(8 11)(9 10)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(25 27)(28 30)(31 33)(34 36)(37 45)(38 44)(39 43)(40 48)(41 47)(42 46)

G:=sub<Sym(48)| (1,31,7,25)(2,35,8,29)(3,33,9,27)(4,34,10,28)(5,32,11,26)(6,36,12,30)(13,43,19,37)(14,47,20,41)(15,45,21,39)(16,46,22,40)(17,44,23,38)(18,48,24,42), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,27)(28,30)(31,33)(34,36)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46)>;

G:=Group( (1,31,7,25)(2,35,8,29)(3,33,9,27)(4,34,10,28)(5,32,11,26)(6,36,12,30)(13,43,19,37)(14,47,20,41)(15,45,21,39)(16,46,22,40)(17,44,23,38)(18,48,24,42), (1,16,4,13)(2,17,5,14)(3,18,6,15)(7,22,10,19)(8,23,11,20)(9,24,12,21)(25,40,28,37)(26,41,29,38)(27,42,30,39)(31,46,34,43)(32,47,35,44)(33,48,36,45), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,6)(2,5)(3,4)(7,12)(8,11)(9,10)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,27)(28,30)(31,33)(34,36)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46) );

G=PermutationGroup([[(1,31,7,25),(2,35,8,29),(3,33,9,27),(4,34,10,28),(5,32,11,26),(6,36,12,30),(13,43,19,37),(14,47,20,41),(15,45,21,39),(16,46,22,40),(17,44,23,38),(18,48,24,42)], [(1,16,4,13),(2,17,5,14),(3,18,6,15),(7,22,10,19),(8,23,11,20),(9,24,12,21),(25,40,28,37),(26,41,29,38),(27,42,30,39),(31,46,34,43),(32,47,35,44),(33,48,36,45)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,6),(2,5),(3,4),(7,12),(8,11),(9,10),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(25,27),(28,30),(31,33),(34,36),(37,45),(38,44),(39,43),(40,48),(41,47),(42,46)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A···4F4G4H4I4J4K4L4M4N4O6A6B6C6D6E12A12B12C12D12E···12N
order122222222234···4444444444666661212121212···12
size11112266121222···244466121212122224422224···4

45 irreducible representations

dim11111111111111122222222444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4oD4C4oD4C4oD122+ 1+4S3xC4oD4D4oD12
kernelC42:12D6C42:2S3C4xD12C42:7S3C42:3S3Dic3.D4S3xC22:C4Dic3:4D4D6:D4D6.D4D6:Q8C4:C4:S3C2xD6:C4C23.28D6C3xC42:C2C42:C2C42C22:C4C4:C4C22xC4D6C2xC6C22C6C2C2
# reps11111111121111112221448122

Matrix representation of C42:12D6 in GL6(F13)

800000
080000
0012000
0001200
000001
000010
,
010000
100000
0012000
0001200
000080
000008
,
100000
010000
00121200
001000
000010
0000012
,
100000
0120000
00121200
000100
0000120
000001

G:=sub<GL(6,GF(13))| [8,0,0,0,0,0,0,8,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1] >;

C42:12D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{12}D_6
% in TeX

G:=Group("C4^2:12D6");
// GroupNames label

G:=SmallGroup(192,1086);
// by ID

G=gap.SmallGroup(192,1086);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,100,675,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<